Methane to Methanol: Structure–Activity Relationships for Cu-CHA
نویسندگان
چکیده
منابع مشابه
Printable enzyme-embedded materials for methane to methanol conversion
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes ...
متن کاملEffect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen
Steam reforming of methanol can be considered as an attractive reaction aiming at hydrogen production for PEM fuel cells. Although Cu/Al-contained catalysts are considerably evaluated in this reaction, further evaluation is essential to evaluate the impact of some promoters like Pt in order to find a comprehensively optimized catalyst. Pt promoter is employed with different methods in this ...
متن کاملMethanol Oxidation on Cu(110)
In this paper we highlight the important contribution made by Bob Madix to the understanding of catalysis at single crystal surfaces, focusing here on a favourite model system of his, namely the oxidation of methanol on Cu(110). Madix showed clearly that the methoxy was the pivotal intermediate involved, and it is bound to the surface through the oxygen atom. Here we demonstrate the nature of t...
متن کاملContinuous selective oxidation of methane to methanol over Cu - and Fe - modified ZSM - 5 catalysts in a flow reactor
The selective oxidation of methane to methanol is a key challenge in catalysis. Iron and copper modified ZSM-5 catalysts are shown to be effective for this reaction using H2O2 as the oxidant under continuous flow operation. Co-impregnation of ZSM-5 with Fe and Cu by chemical vapour impregnation yielded catalysts that showed high selectivity to methanol (> 92% selectivity, 0.5 % conversion), as ...
متن کاملA [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm(-1). In the present study, this absorption band is used to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2017
ISSN: 0002-7863,1520-5126
DOI: 10.1021/jacs.7b06472